Autonomous Ocean Vehicles

For Immediate Release:

Ed Lyman-HIHWNMS-NOAA Fisheries Permit #782-1719 (Original image has been altered to include Wave Glider) - Copy1.png

  

 

Autonomous (Robotic) Wave Glider Mission from Hawaii to Mexico Detects Humpback Whale Calls in Tropical Mid-Ocean and Questions Definition of Winter Breeding Assemblies 

Current NMFS humpback whale management policies assume Mexico and Hawaii winter assemblies are distinct with separate status and management warranted

 

BIG ISLAND, HAWAII July 1, 2019 – Jupiter Research Foundation and Whale Trust are pleased to announce the publication of the results of the first leg of their autonomous Wave Glider HUMPACS (Humpback Pacific Survey) acoustic survey in Journal of the Acoustic Society of America – Express Letters. During a 100-day nearly 7,000 km (3,800 nm) round trip survey on a line between Hawaii and Mexico within the 2018 winter breeding season, humpback whale calls were heard in mid-ocean basin, halfway between the known near-shore assemblies. 

“They’re not ‘supposed’ to be there,” says Dr. Jim Darling, Whale Trust biologist and project partner. Humpbacks are known to assemble in specific near-shore, relatively shallow, breeding grounds in Mexico and Hawaii. “But then no one has looked in these more remote, offshore areas either.”

Mission control was from Puako, Hawaii where Beth Goodwin, Jupiter Research Foundation VP and HUMPACS Project Manager, and her team were in daily communication with the Wave Glider: monitoring status, downloading surface and underwater photographs, downloading short samples of recordings via satellite, and making course alterations if needed. 

From January 16 to April 25, 2018, the Wave Glider, named Europa (after one of Jupiter’s moons), performed a 6,965.5 km, 100-day (RT) continual acoustic survey from Hawaii towards Mexico circa 20° N. The survey resulted in 2,272 hours of recordings and included over 4,000 cetacean calls.  Of these calls, 2,048 were identified as humpback whale calls.

The humpback calls were recorded up to 2,184 km (1179 nm) offshore spanning 30 days between January 20, when the Wave Glider left Hawaii, to February 23, 2018. On many days, multiple humpback call detections were recorded (up to 377 calls over 23 hours of a day). Actual numbers of whales cannot be determined, as one whale can make many calls.

“This was risky, we had no idea if humpbacks were even out there,” says Goodwin. “And then, even if they were, there were needle-in-haystack odds of intersecting them considering the size of the Wave Glider and the size of the ocean.”

Possible explanations, suggests Darling, include an undocumented migration route to Hawaii, a separate (from Hawaii and Mexico) offshore assembly of humpback whales, or travel between Mexico and Hawaii assemblies within the same season. At the very least, these results indicate an extension of winter distribution and habitat of humpbacks. It could also be that these offshore whales have not been included in current population estimates.

Since 2016, the model used by the U.S. National Marine Fisheries Service (NMFS) to manage humpback whale populations has treated the Mexico and Hawaii winter assemblies of humpback whales as distinct populations. As such, these populations have different status under the U.S. Endangered Species Act (ESA): Mexico humpback whales are considered threatened while Hawaii humpback whales have been delisted; that is, the Hawaii population has no protection under the ESA.

This assessment is further complicated by longstanding research showing shared song between the breeding assemblies and an interchange of photo-identified individual whales between these two winter breeding grounds.

Our findings question the independence of Mexico and Hawaii humpback whale populations and illustrate the huge potential for the use of autonomous vehicles in the study of whales across remote locations of the ocean.

“We feel certain our results will encourage more research, affect how humpback and other whales are monitored, and help with management,” says Goodwin.

The paper is online: https://doi.org/10.1121/1.5111970

 

BACKGROUND

 

Wave Glider

The Wave Glider (produced by Liquid Robotics, a Boeing Company) consists of a surfboard-sized surface platform (the float) tethered by an umbilical cable to a submerged glider (the sub) 8 m (26 ft.) below the surface. The float includes a command and control unit, three solar panels, an instrument package, surface and underwater cameras and communications systems. The sub is the propulsion unit, which transforms vertical wave movement into forward motion (https://www.liquid-robotics.com/wave-glider/how-it-works/). Time-lapse series of images from the two Europa cameras, surface and underwater, are accessible on the JRF blog:
http://jupiterfoundation.org/current/2018/5/22/f2l6bevguh177l21x42gi20pegicbv

About Jupiter Research Foundation

The Jupiter Research Foundation is a 501(c)(3) non-profit scientific research organization. Established in 2003, the Foundation is dedicated to conducting innovative scientific research and finding technological solutions to problems which are outside of mainstream science and technology. Our findings are shared with the public and academic community in hopes of better monitoring and understanding the natural world. Visit https://jupiterfoundation.org/ to learn more. 

About Whale Trust

Whale Trust is a Maui-based 501(c)(3) non-profit organization whose mission is to promote, support and conduct scientific research on whales and the marine environment and broadly communicate the findings to the public. Whale Trust research programs focus on behavior, communication and social organization of whales. For more information, visit https://whaletrust.org/.


Subscribe to our blog

S.O.S. Europa Needs Your Help

If you’ve been following Europa’s journey west, you probably noticed a very distinct change in it’s behavior on February 11th, 2019 (about 9 days ago).

EuropaMap.JPG

This was not a planned detour.

Unfortunately, all communication to the the sub has been lost. We can no longer control the rudder, and that means Europa is currently just drifting with the ocean’s currents.

We are not sure what exactly caused this communication failure, but we took all possible steps to fix it remotely and found no success.

When the sub loses communication, it automatically gives itself a “right rudder”. This is for situations like the one we are currently in, and the hope is that the glider will just circle in the area where it lost communication until it can be fixed or recovered.

Being that the glider is out in the middle of the Pacific Ocean, there are a lot of strong currents that are pushing the glider in certain directions. When the sub is trying to do one thing, and the float another, twists in the umbilical can occur.

One twist means that the float has become 360 degrees out of sync with the sub. As you can see in the images below, Europa has had a number of twists take place since this communication error took place.

Europa at the beginning of the “right rudder” on February 11, 2019

Europa at the beginning of the “right rudder” on February 11, 2019

Europa after a few days of drifting with the “right rudder”

Europa after a few days of drifting with the “right rudder”

Obviously, our plans have now changed! We need to find a way to recover the glider.

There are actually a number of foreign fishing boats out in the vicinity, but that proves slightly difficult for a number of reasons. Language, when they will go back to port, ability to recovery the glider, willingness to help. These are all factors in this recovery that we are currently dealing with.

Other options are also available in the Marshall Islands (currently about 700 nautical miles SSW of Europa), but they have their own issues as well.

The above shows the path of a Taiwanese fishing boat, and how it missed direct contact with Europa by only 2.5 hours. The distance from the point where the two paths intersect to where Europa is currently at in this image is only 1 nautical mile. Unfortunately, due to communication issues, we were not able to contact the ship and have them try to recover Europa for us.

The above shows the path of a Taiwanese fishing boat, and how it missed direct contact with Europa by only 2.5 hours. The distance from the point where the two paths intersect to where Europa is currently at in this image is only 1 nautical mile. Unfortunately, due to communication issues, we were not able to contact the ship and have them try to recover Europa for us.

Of note: Europa will typically automatically avoid vessels that it determines are in its path within a certain distance. Because of the fact that the float cannot communicate with the sub, this functionality is now basically inoperable. This puts Europa at a higher risk of being run over by a boat while drifting at sea, hence, we are trying to recover sooner rather than later. In the mean time, we are requesting audio files that are stored on board in 30 second clips through Rudics in hopes to salvage as much data as possible in the event that we eventually lose Europa to a collision.

There are a few really good things that we still have going for us. We have full communication to the float. The sub is still attached. The cameras and lights and sensors on the float are still working.

 
Float.jpg
 

These are all things that we’re actually very happy about. We are able to keep an up-to-date location on Europa, and expect that’s going to be a vital part of the recovery once we get a plan in place.

We are constantly working on a way to get Europa back, and will keep you updated along the journey.

As always, you can continue to track Europa along the way, and if you have any information or thoughts as to how to help aide in the recovery, we’d love to hear them.

Please feel free to reach out! We are offering a reward for the recovery of Europa.

Please contact admin@jupiterfoundation.org

Mahalo, and aloha!


Subscribe to our blog

Europa's NOT Drunk!

You may have noticed that Europa has been bouncing around a bit more than it did on HUMPACS East. Well don’t worry…it’s intentional!

The general path that Europa is following goes along 20oN latitude.

The reason that it is not going in a straight line is because there are numerous seamounts and guyots (aka tablemounts) that we are having it navigate over on it’s way to the Mariana Trench.

Seamounts are basically underwater mountains that are at least 1,000m tall. They do not actually reach the ocean’s surface. Guyots are seamounts that did, at one time, rise above the ocean’s surface, but then eroded away, flattened out, and eventually sunk back down underwater.

Why does all of this matter?

Well, since Europa is basically a very small fish in a very big pond, we need to strategically look for these humpback whales. Even though most of the time the tops of these seamounts and guyots can be found many hundreds, if not thousands, of meters below the ocean’s surface, they are actually great producers of marine ecosystems. That makes us think that we might have a better shot at stumbling upon some humpbacks in those areas, as opposed to simply out in the middle of an even deeper ocean.

There has been some research to support the statement that humpbacks seem to frequent seamounts and guyots, though the exact reason why hasn’t been determined.

The leading theories are that the landmarks serve as resting and/or feeding areas, points for navigation, and even meeting grounds (source: PubMed Central®).

Maybe they’re sharing different versions of their song? At the end of the day, we don’t really know why…yet!

If you’d like to dive a little deeper into the science and evolution of a seamount, check out our blog post Mountains in the Deep Sea.

Figure 1: Europa’s path on a nautical chart. Europa is currently traveling from East to West, and navigating over many different seamounts and guyots. (Depths are in meters).

Figure 1: Europa’s path on a nautical chart. Europa is currently traveling from East to West, and navigating over many different seamounts and guyots. (Depths are in meters).

 
Figure 2: Zoomed in image to show more detailed depths of the Horizon Tablemount that Europa traveled over Jan 16-19, 2019.

Figure 2: Zoomed in image to show more detailed depths of the Horizon Tablemount that Europa traveled over Jan 16-19, 2019.

Figure 3: Europa circling a particular seamount. We will have Europa do this from time to time to search a little more for humpbacks in areas we suspect them to be.

Figure 3: Europa circling a particular seamount. We will have Europa do this from time to time to search a little more for humpbacks in areas we suspect them to be.

If you check out the HUMPACS page, you’ll notice that from January 16-19 Europa was cruising over the Horizon Tablemount. In another two or three weeks, Europa should be traveling around the HIG Guyot. This particular guyot is of note to us here in Hawaii because it was actually discovered about 37 years ago by the “Kana Keoki” research vessel, and named after the Hawaiian Institute of Geophysics (source: Marineregions.org).

So, for those of you that were wondering, and dare we say concerned, about Europa’s up and down path…worry no more! Europa is doing exactly what we want it to do, and we’re collecting lots of great data that we look forward to sharing later on.

Until then, keep checking in and watching Europa as it makes it’s way West across the Pacific Ocean.

Also, check out our live audio stream of the humpback whales that are swimming around Puako, HI right now!

Aloha!



Subscribe to our blog

Photo Time-lapses from Europa

Almost one month has passed since we recovered Europa, and we are still in the process of analyzing data, however; we have reviewed all of our photos. During the 3.5 month mission, we had a camera attached to both the top and bottom of Europa’s float that took above and underwater images periodically on a daily basis.

The top camera was mounted on the back of the float looking forward, which enabled us to inspect the float and antenna deck during the mission. The bottom camera looked down towards the sub underneath the water to help us check the sub and umbilical. In the previous blog, we mentioned we had a gooseneck barnacle that grew over the underwater camera lens. Even so, we were still able to get glimpses of the sub for diagnostic purposes.

Over the 3.5 month mission, the top and bottom mounted cameras took over 500 photos each. We have constructed two time-lapse videos of the above and underwater pictures, which are each a little over three minutes long. We were able to capture some fantastic photos! The sunset photos and waves washing over the float are captivating, and it’s fun to watch the barnacle grow over time in the underwater footage.

In our next blog, we will post some sample of audio files of some exciting sounds we’ve heard, including odontocetes whistles and clicks, echolocation, and other unusual noises. Stay tuned!


Subscribe to our blog